Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Brain ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38562097

RESUMO

Between 2.5 and 28% of people infected with SARS-CoV-2 suffer Long COVID or persistence of symptoms for months after acute illness. Many symptoms are neurological, but the brain changes underlying the neuropsychological impairments remain unclear. This study aimed to provide a detailed description of the cognitive profile, the pattern of brain alterations in Long COVID and the potential association between them. To address these objectives, 83 patients with persistent neurological symptoms after COVID-19 were recruited, and 22 now healthy controls chosen because they had suffered COVID-19 but did not experience persistent neurological symptoms. Patients and controls were matched for age, sex and educational level. All participants were assessed by clinical interview, comprehensive standardized neuropsychological tests and structural MRI. The mean global cognitive function of patients with Long COVID assessed by ACE III screening test (Overall Cognitive level - OCLz= -0.39± 0.12) was significantly below the infection recovered-controls (OCLz= +0.32± 0.16, p< 0.01). We observed that 48% of patients with Long COVID had episodic memory deficit, with 27% also impaired overall cognitive function, especially attention, working memory, processing speed and verbal fluency. The MRI examination included grey matter morphometry and whole brain structural connectivity analysis. Compared to infection recovered controls, patients had thinner cortex in a specific cluster centred on the left posterior superior temporal gyrus. In addition, lower fractional anisotropy (FA) and higher radial diffusivity (RD) were observed in widespread areas of the patients' cerebral white matter relative to these controls. Correlations between cognitive status and brain abnormalities revealed a relationship between altered connectivity of white matter regions and impairments of episodic memory, overall cognitive function, attention and verbal fluency. This study shows that patients with neurological Long COVID suffer brain changes, especially in several white matter areas, and these are associated with impairments of specific cognitive functions.

2.
J Neurosci ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684365

RESUMO

Superagers are elderly individuals with the memory ability of people 30 years younger and provide evidence that age-related cognitive decline is not inevitable. In a sample of 64 superagers (mean age 81.9; 59% women) and 55 typical older adults (mean age 82.4; 64% women) from the Vallecas Project, we studied, cross-sectionally and longitudinally over 5 years with yearly follow-ups, the global cerebral white matter status as well as region-specific white matter microstructure assessment derived from diffusivity measures. Superagers and typical older adults showed no difference in global white matter health (total white matter volume, Fazekas score, and lesions volume) cross-sectionally or longitudinally. However, analyses of diffusion parameters revealed better white matter microstructure in superagers than in typical older adults. Cross-sectional differences showed higher fractional anisotropy (FA) in superagers mostly in frontal fibres and lower mean diffusivity (MD) in most white matter tracts, expressed as an anteroposterior gradient with greater group differences in anterior tracts. FA decrease over time is slower in superagers than in typical older adults in all white matter tracts assessed, which is mirrored by MD increases over time being slower in superagers than in typical older adults in all white matter tracts except for the corticospinal tract, the uncinate fasciculus and the forceps minor. The better preservation of white matter microstructure in superagers relative to typical older adults supports resistance to age-related brain structural changes as a mechanism underpinning the remarkable memory capacity of superagers, while their regional ageing pattern is in line with the last-in-first-out hypothesis.Significance Statement Episodic memory is one of the cognitive abilities most vulnerable to ageing. Although memory normally declines with age, some older people may have memory performance similar to that of people 30 years younger, and this phenomenon is often conceptualised as superageing. Understanding the superager phenotype can provide insights into mechanisms of protection against age-related memory loss and dementia. We studied the white matter structure of a large sample of 64 superagers over the age of 80 and 55 age-matched typical older adults during 5 years with yearly follow-ups showing evidence of slower age-related changes in the brains of superagers especially in protracted maturation tracts, indicating resistance to age-related changes and a regional ageing pattern in line with the last-in-first-out hypothesis.

3.
Cell Rep ; 43(4): 114071, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38592973

RESUMO

Understanding how emotional processing modulates learning and memory is crucial for the treatment of neuropsychiatric disorders characterized by emotional memory dysfunction. We investigate how human medial temporal lobe (MTL) neurons support emotional memory by recording spiking activity from the hippocampus, amygdala, and entorhinal cortex during encoding and recognition sessions of an emotional memory task in patients with pharmaco-resistant epilepsy. Our findings reveal distinct representations for both remembered compared to forgotten and emotional compared to neutral scenes in single units and MTL population spiking activity. Additionally, we demonstrate that a distributed network of human MTL neurons exhibiting mixed selectivity on a single-unit level collectively processes emotion and memory as a network, with a small percentage of neurons responding conjointly to emotion and memory. Analyzing spiking activity enables a detailed understanding of the neurophysiological mechanisms underlying emotional memory and could provide insights into how emotion alters memory during healthy and maladaptive learning.


Assuntos
Emoções , Memória , Neurônios , Humanos , Emoções/fisiologia , Neurônios/fisiologia , Memória/fisiologia , Masculino , Adulto , Feminino , Lobo Temporal/fisiologia , Tonsila do Cerebelo/fisiologia , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Adulto Jovem
4.
Curr Alzheimer Res ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425106

RESUMO

BACKGROUND: Mild Cognitive Impairment (MCI) usually precedes the symptomatic phase of dementia and constitutes a window of opportunities for preventive therapies. OBJECTIVES: The objective of this study was to predict the time an MCI patient has left to reach dementia and obtain the most likely natural history in the progression of MCI towards dementia. METHODS: This study was conducted on 633 MCI patients and 145 subjects with dementia through 4726 visits over 15 years from Alzheimer Disease Neuroimaging Initiative (ADNI) cohort. A combination of data from AT(N) profiles at baseline and longitudinal predictive modeling was applied. A data-driven approach was proposed for categorical diagnosis prediction and timeline estimation of cognitive decline progression, which combined supervised and unsupervised learning techniques. RESULTS: A reduced vector of only neuropsychological measures was selected for training the models. At baseline, this approach had high performance in detecting subjects at high risk of converting from MCI to dementia in the coming years. Furthermore, a Disease Progression Model (DPM) was built and also verified using three metrics. As a result of the DPM focused on the studied population, it was inferred that amyloid pathology (A+) appears about 7 years before dementia, and tau pathology (T+) and neurodegeneration (N+) occur almost simultaneously, between 3 and 4 years before dementia. In addition, MCI-A+ subjects were shown to progress more rapidly to dementia compared to MCI-A- subjects. CONCLUSION: Based on proposed natural histories and cross-sectional and longitudinal analysis of AD markers, the results indicated that only a single cerebrospinal fluid sample is necessary during the prodromal phase of AD. Prediction from MCI into dementia and its timeline can be achieved exclusively through neuropsychological measures.

5.
Alzheimers Dement ; 20(4): 2606-2619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369763

RESUMO

INTRODUCTION: Three-dimensional (3D) histology analyses are essential to overcome sampling variability and understand pathological differences beyond the dissection axis. We present Path2MR, the first pipeline allowing 3D reconstruction of sparse human histology without a magnetic resonance imaging (MRI) reference. We implemented Path2MR with post-mortem hippocampal sections to explore pathology gradients in Alzheimer's disease. METHODS: Blockface photographs of brain hemisphere slices are used for 3D reconstruction, from which an MRI-like image is generated using machine learning. Histology sections are aligned to the reconstructed hemisphere and subsequently to an atlas in standard space. RESULTS: Path2MR successfully registered histological sections to their anatomic position along the hippocampal longitudinal axis. Combined with histopathology quantification, we found an expected peak of tau pathology at the anterior end of the hippocampus, whereas amyloid-beta (Aß) displayed a quadratic anterior-posterior distribution. CONCLUSION: Path2MR, which enables 3D histology using any brain bank data set, revealed significant differences along the hippocampus between tau and Aß. HIGHLIGHTS: Path2MR enables three-dimensional (3D) brain reconstruction from blockface dissection photographs. This pipeline does not require dense specimen sampling or a subject-specific magnetic resonance (MR) image. Anatomically consistent mapping of hippocampal sections was obtained with Path2MR. Our analyses revealed an anterior-posterior gradient of hippocampal tau pathology. In contrast, the peak of amyloid-beta (Aß) deposition was closer to the hippocampal body.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Hipocampo/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Proteínas tau/metabolismo
6.
Alzheimers Res Ther ; 16(1): 46, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414035

RESUMO

BACKGROUND: The pathophysiology of Alzheimer's disease (AD) involves ß -amyloid (A ß ) accumulation. Early identification of individuals with abnormal ß -amyloid levels is crucial, but A ß quantification with positron emission tomography (PET) and cerebrospinal fluid (CSF) is invasive and expensive. METHODS: We propose a machine learning framework using standard non-invasive (MRI, demographics, APOE, neuropsychology) measures to predict future A ß -positivity in A ß -negative individuals. We separately study A ß -positivity defined by PET and CSF. RESULTS: Cross-validated AUC for 4-year A ß conversion prediction was 0.78 for the CSF-based and 0.68 for the PET-based A ß definitions. Although not trained for the clinical status-change prediction, the CSF-based model excelled in predicting future mild cognitive impairment (MCI)/dementia conversion in cognitively normal/MCI individuals (AUCs, respectively, 0.76 and 0.89 with a separate dataset). CONCLUSION: Standard measures have potential in detecting future A ß -positivity and assessing conversion risk, even in cognitively normal individuals. The CSF-based definition led to better predictions than the PET-based definition.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Aprendizado de Máquina , Proteínas tau/líquido cefalorraquidiano
7.
Ann Clin Transl Neurol ; 11(1): 143-155, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158639

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is a major health concern for aging adults with Down syndrome (DS), but conventional diagnostic techniques are less reliable in those with severe baseline disability. Likewise, acquisition of magnetic resonance imaging to evaluate cerebral atrophy is not straightforward, as prolonged scanning times are less tolerated in this population. Computed tomography (CT) scans can be obtained faster, but poor contrast resolution limits its function for morphometric analysis. We implemented an automated analysis of CT scans to characterize differences across dementia stages in a cross-sectional study of an adult DS cohort. METHODS: CT scans of 98 individuals were analyzed using an automatic algorithm. Voxel-based correlations with clinical dementia stages and AD plasma biomarkers (phosphorylated tau-181 and neurofilament light chain) were identified, and their dysconnectomic patterns delineated. RESULTS: Dementia severity was negatively correlated with gray (GM) and white matter (WM) volumes in temporal lobe regions, including parahippocampal gyri. Dysconnectome analysis revealed an association between WM loss and temporal lobe GM volume reduction. AD biomarkers were negatively associated with GM volume in hippocampal and cingulate gyri. INTERPRETATION: Our automated algorithm and novel dysconnectomic analysis of CT scans successfully described brain morphometric differences related to AD in adults with DS, providing a new avenue for neuroimaging analysis in populations for whom magnetic resonance imaging is difficult to obtain.


Assuntos
Doença de Alzheimer , Síndrome de Down , Adulto , Humanos , Síndrome de Down/diagnóstico por imagem , Síndrome de Down/patologia , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética/métodos , Biomarcadores
8.
Res Sq ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38045279

RESUMO

Deep-brain stimulation (DBS) is a potential novel treatment for memory dysfunction. Current attempts to enhance memory focus on stimulating human hippocampus or entorhinal cortex. However, an alternative strategy is to stimulate brain areas providing modulatory inputs to medial temporal memory-related structures, such as the nucleus accumbens (NAc), which is implicated in enhancing episodic memory encoding. Here, we show that NAc-DBS improves episodic and spatial memory in psychiatric patients. During stimulation, NAc-DBS increased the probability that infrequent (oddball) pictures would be subsequently recollected, relative to periods off stimulation. In a second experiment, NAc-DBS improved performance in a virtual path-integration task. An optimal electrode localization analysis revealed a locus spanning postero-medio-dorsal NAc and medial septum predictive of memory improvement across both tasks. Patient structural connectivity analyses, as well as NAc-DBS-evoked hemodynamic responses in a rat model, converge on a central role for NAc in a hippocampal-mesolimbic circuit regulating encoding into long-term memory. Thus, short-lived, phasic NAc electrical stimulation dynamically improved memory, establishing a critical on-line role for human NAc in episodic memory and providing an empirical basis for considering NAc-DBS in patients with loss of memory function.

9.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38105985

RESUMO

INTRODUCTION: Three-dimensional (3D) histology analyses are essential to overcome sampling variability and understand pathological differences beyond the dissection axis. We present Path2MR, the first pipeline allowing 3D reconstruction of sparse human histology without an MRI reference. We implemented Path2MR with post-mortem hippocampal sections to explore pathology gradients in Alzheimer's Disease. METHODS: Blockface photographs of brain hemisphere slices are used for 3D reconstruction, from which an MRI-like image is generated using machine learning. Histology sections are aligned to the reconstructed hemisphere and subsequently to an atlas in standard space. RESULTS: Path2MR successfully registered histological sections to their anatomical position along the hippocampal longitudinal axis. Combined with histopathology quantification, we found an expected peak of tau pathology at the anterior end of the hippocampus, while amyloid-ß displayed a quadratic anterior-posterior distribution. CONCLUSION: Path2MR, which enables 3D histology using any brain bank dataset, revealed significant differences along the hippocampus between tau and amyloid-ß.

10.
Biol Psychiatry ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38141909

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is a promising treatment option for treatment-refractory obsessive-compulsive disorder (OCD). Several stimulation targets have been used, mostly in and around the anterior limb of the internal capsule and ventral striatum. However, the precise target within this region remains a matter of debate. METHODS: Here, we retrospectively studied a multicenter cohort of 82 patients with OCD who underwent DBS of the ventral capsule/ventral striatum and mapped optimal stimulation sites in this region. RESULTS: DBS sweet-spot mapping performed on a discovery set of 58 patients revealed 2 optimal stimulation sites associated with improvements on the Yale-Brown Obsessive Compulsive Scale, one in the anterior limb of the internal capsule that overlapped with a previously identified OCD-DBS response tract and one in the region of the inferior thalamic peduncle and bed nucleus of the stria terminalis. Critically, the nucleus accumbens proper and anterior commissure were associated with beneficial but suboptimal clinical improvements. Moreover, overlap with the resulting sweet- and sour-spots significantly estimated variance in outcomes in an independent cohort of 22 patients from 2 additional DBS centers. Finally, beyond obsessive-compulsive symptoms, stimulation of the anterior site was associated with optimal outcomes for both depression and anxiety, while the posterior site was only associated with improvements in depression. CONCLUSIONS: Our results suggest how to refine targeting of DBS in OCD and may be helpful in guiding DBS programming in existing patients.

11.
Lancet Healthy Longev ; 4(8): e374-e385, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454673

RESUMO

BACKGROUND: Cognitive abilities, particularly memory, normally decline with age. However, some individuals, often designated as superagers, can reach late life with the memory function of individuals 30 years younger. We aimed to characterise the brain structure of superagers and identify demographic, lifestyle, and clinical factors associated with this phenotype. METHODS: We selected cognitively healthy participants from the Vallecas Project longitudinal cohort recruited between Oct 10, 2011, and Jan 14, 2014, aged 79·5 years or older, on the basis of their delayed verbal episodic memory score. Participants were assessed with the Free and Cued Selective Reminding Test and with three non-memory tests (the 15-item version of the Boston Naming Test, the Digit Symbol Substitution Test, and the Animal Fluency Test). Participants were classified as superagers if they scored at or above the mean values for a 50-56-year-old in the Free and Cued Selective Reminding Test and within one standard deviation of the mean or above for their age and education level in the three non-memory tests, or as typical older adults if they scored within one standard deviation of the mean for their age and education level in the Free and Cued Selective Reminding Test. Data acquired as per protocol from up to six yearly follow-ups were used for longitudinal analyses. FINDINGS: We included 64 superagers (mean age 81·9 years; 38 [59%] women and 26 [41%] men) and 55 typical older adults (82·4 years; 35 [64%] women and 20 [36%] men). The median number of follow-up visits was 5·0 (IQR 5·0-6·0) for superagers and 5·0 (4·5-6·0) for typical older adults. Superagers exhibited higher grey matter volume cross-sectionally in the medial temporal lobe, cholinergic forebrain, and motor thalamus. Longitudinally, superagers also showed slower total grey matter atrophy, particularly within the medial temporal lobe, than did typical older adults. A machine learning classification including 89 demographic, lifestyle, and clinical predictors showed that faster movement speed (despite no group differences in exercise frequency) and better mental health were the most differentiating factors for superagers. Similar concentrations of dementia blood biomarkers in superager and typical older adult groups suggest that group differences reflect inherent superager resistance to typical age-related memory loss. INTERPRETATION: Factors associated with dementia prevention are also relevant for resistance to age-related memory decline and brain atrophy, and the association between superageing and movement speed could provide potential novel insights into how to preserve memory function into the ninth decade. FUNDING: Queen Sofia Foundation, CIEN Foundation, Spanish Ministry of Science and Innovation, Alzheimer's Association, European Research Council, MAPFRE Foundation, Carl Zeiss Foundation, and the EU Comission for Horizon 2020. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Assuntos
Encéfalo , Demência , Feminino , Masculino , Humanos , Encéfalo/patologia , Cognição , Fenótipo , Atrofia/patologia
12.
Alzheimers Dement ; 19(11): 5307-5315, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37366342

RESUMO

INTRODUCTION: Hippocampal sclerosis of aging (HS) is an important component of combined dementia neuropathology. However, the temporal evolution of its histologically-defined features is unknown. We investigated pre-mortem longitudinal hippocampal atrophy associated with HS, as well as with other dementia-associated pathologies. METHODS: We analyzed hippocampal volumes from magnetic resonance imaging (MRI) segmentations in 64 dementia patients with longitudinal MRI follow-up and post-mortem neuropathological evaluation, including HS assessment in the hippocampal head and body. RESULTS: Significant HS-associated hippocampal volume changes were observed throughout the evaluated timespan, up to 11.75 years before death. These changes were independent of age and Alzheimer's disease (AD) neuropathology and were driven specifically by CA1 and subiculum atrophy. AD pathology, but not HS, was associated significantly with the rate of hippocampal atrophy. DISCUSSION: HS-associated volume changes are detectable on MRI earlier than 10 years before death. Based on these findings, volumetric cutoffs could be derived for in vivo differentiation between HS and AD. HIGHLIGHTS: Hippocampal atrophy was found in HS+ patients earlier than 10 years before death. These early pre-mortem changes were driven by reduced CA1 and subiculum volumes. Rates of hippocampus and subfield volume decline were independent of HS. In contrast, steeper atrophy rates were associated with AD pathology burden. Differentiation between AD and HS could be facilitated based on these MRI findings.


Assuntos
Doença de Alzheimer , Esclerose Hipocampal , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Atrofia/patologia
13.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945448

RESUMO

INTRODUCTION: Hippocampal sclerosis of aging (HS) is an important component of combined dementia neuropathology. However, the temporal evolution of its histologically-defined features is unknown. We investigated pre-mortem longitudinal hippocampal atrophy associated with HS, as well as with other dementia-associated pathologies. METHODS: We analyzed hippocampal volumes from MRI segmentations in 64 dementia patients with longitudinal MRI follow-up and post-mortem neuropathological evaluation, including HS assessment in the hippocampal head and body. RESULTS: Significant HS-associated hippocampal volume changes were observed thoughout the evaluated timespan, up to 11.75 years before death. These changes were independent of age and Alzheimer’s Disease (AD) burden, and specifically driven by CA1 and subiculum. AD burden, but not HS, significantly associated with the rate of hippocampal atrophy. DISCUSSION: HS-associated volume changes are detectable on MRI earlier than 10 years before death. These findings could contribute to the derivation of volumetric cut-offs for in vivo differentiation between HS and AD.

14.
Alzheimers Dement ; 19(7): 3028-3040, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36691755

RESUMO

INTRODUCTION: Hippocampal sclerosis of aging (HS) is defined by end-stage histological findings, strongly associated with limbic-predominant age-related TAR DNA-binding protein 43 (TDP-43) encephalopathy (LATE). We aimed to characterize features of early HS to refine the understanding of its role within combined pathology. METHODS: We studied 159 brain donations from the multimodal Vallecas Alzheimer's Center Study. A staging system (0 to IV) was developed to account for HS progression and analyzed in relation to pre-mortem cognitive and magnetic resonance imaging (MRI) data. RESULTS: Our HS staging system displayed a significant correlation with disease duration, cognitive performance, and combined neuropathologies, especially with LATE. Two-level assessment along the hippocampal longitudinal axis revealed an anterior-posterior gradient of HS severity. In vivo MRI showed focally reduced hippocampal gray matter density as a function of HS staging. DISCUSSION: The association of this staging system with clinical progression and structural differences supports its utility in the characterization and potential in vivo monitoring of HS. HIGHLIGHTS: The definition of hippocampal sclerosis of aging (HS) is currently limited to an end-stage pathological fingerprint. We characterize early HS histological features to define a complete staging system. The proposed staging displays a parallel but not identical progression to limbic-predominant age-related TAR DNA-binding protein 43 (TDP-43) encephalopathy (LATE). The proposed staging also reflects the expected demographic and cognitive differences associated with HS. In vivo magnetic resonance imaging (MRI) showed focal hippocampal gray matter loss as a function of HS staging.


Assuntos
Doença de Alzheimer , Encefalopatias , Esclerose Hipocampal , Humanos , Substância Cinzenta/patologia , Envelhecimento/patologia , Hipocampo/patologia , Encefalopatias/metabolismo , Encefalopatias/patologia , Proteínas de Ligação a DNA/metabolismo , Doença de Alzheimer/patologia
15.
Brain ; 146(1): 135-148, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104842

RESUMO

Responding to threat is under strong survival pressure, promoting the evolution of systems highly optimized for the task. Though the amygdala is implicated in 'detecting' threat, its role in the action that immediately follows-'orienting'-remains unclear. Critical to mounting a targeted response, such early action requires speed, accuracy, and resilience optimally achieved through conserved, parsimonious, dedicated systems, insured against neural loss by a parallelized functional organization. These characteristics tend to conceal the underlying substrate not only from correlative methods but also from focal disruption over time scales long enough for compensatory adaptation to take place. In a study of six patients with intracranial electrodes temporarily implanted for the clinical evaluation of focal epilepsy, we investigated gaze orienting to fear during focal, transient, unilateral direct electrical disruption of the amygdala. We showed that the amygdala is necessary for rapid gaze shifts towards faces presented in the contralateral hemifield regardless of their emotional expression, establishing its functional lateralization. Behaviourally dissociating the location of presented fear from the direction of the response, we implicated the amygdala not only in detecting contralateral faces, but also in automatically orienting specifically towards fearful ones. This salience-specific role was demonstrated within a drift-diffusion model of action to manifest as an orientation bias towards the location of potential threat. Pixel-wise analysis of target facial morphology revealed scleral exposure as its primary driver, and induced gamma oscillations-obtained from intracranial local field potentials-as its time-locked electrophysiological correlate. The amygdala is here reconceptualized as a functionally lateralized instrument of early action, reconciling previous conflicting accounts confined to detection, and revealing a neural organisation analogous to the superior colliculus, with which it is phylogenetically kin. Greater clarity on its role has the potential to guide therapeutic resection, still frequently complicated by impairments of cognition and behaviour related to threat, and inform novel focal stimulation techniques for the management of neuropsychiatric conditions.


Assuntos
Tonsila do Cerebelo , Medo , Humanos , Medo/fisiologia , Medo/psicologia , Cognição , Expressão Facial , Imageamento por Ressonância Magnética , Estimulação Luminosa
16.
Elife ; 112022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346216

RESUMO

New study reveals how various regions of the human cortex connect to the hippocampus along its longer anterior-posterior axis, shedding light on the way this structure is functionally organized.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Humanos , Córtex Cerebral
17.
Nat Commun ; 13(1): 6403, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302909

RESUMO

Memory for aversive events is central to survival but can become maladaptive in psychiatric disorders. Memory enhancement for emotional events is thought to depend on amygdala modulation of hippocampal activity. However, the neural dynamics of amygdala-hippocampal communication during emotional memory encoding remain unknown. Using simultaneous intracranial recordings from both structures in human patients, here we show that successful emotional memory encoding depends on the amygdala theta phase to which hippocampal gamma activity and neuronal firing couple. The phase difference between subsequently remembered vs. not-remembered emotional stimuli translates to a time period that enables lagged coherence between amygdala and downstream hippocampal gamma. These results reveal a mechanism whereby amygdala theta phase coordinates transient amygdala -hippocampal gamma coherence to facilitate aversive memory encoding. Pacing of lagged gamma coherence via amygdala theta phase may represent a general mechanism through which the amygdala relays emotional content to distant brain regions to modulate other aspects of cognition, such as attention and decision-making.


Assuntos
Tonsila do Cerebelo , Memória , Humanos , Memória/fisiologia , Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Emoções/fisiologia , Rememoração Mental/fisiologia
18.
Neuroimage ; 263: 119630, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113738

RESUMO

Memory normally declines with ageing and these age-related cognitive changes are associated with changes in brain structure. Episodic memory retrieval has been widely studied during ageing, whereas learning has received less attention. Here we examined the neural correlates of episodic learning rate in ageing. Our study sample consisted of 982 cognitively healthy female and male older participants from the Vallecas Project cohort, without a clinical diagnosis of mild cognitive impairment or dementia. The learning rate across the three consecutive recall trials of the verbal memory task (Free and Cued Selective Reminding Test) recall trials was used as a predictor of grey matter (GM) using voxel-based morphometry, and WM microstructure using tract-based spatial statistics on fractional anisotropy (FA) and mean diffusivity (MD) measures. Immediate Recall improved by 1.4 items per trial on average, and this episodic learning rate was faster in women and negatively associated with age. Structurally, hippocampal and anterior thalamic GM volume correlated positively with learning rate. Learning also correlated with the integrity of WM microstructure (high FA and low MD) in an extensive network of tracts including bilateral anterior thalamic radiation, fornix, and long-range tracts. These results suggest that episodic learning rate is associated with key anatomical structures for memory functioning, motivating further exploration of the differential diagnostic properties between episodic learning rate and retrieval in ageing.


Assuntos
Envelhecimento Saudável , Memória Episódica , Substância Branca , Feminino , Humanos , Masculino , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Testes Neuropsicológicos
19.
Sci Rep ; 12(1): 7834, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551490

RESUMO

Focal application of transcranial static magnetic field stimulation (tSMS) over the human motor cortex induces local changes in cortical excitability. Whether tSMS can also induce distant network effects, and how these local and distant effects may vary over time, is currently unknown. In this study, we applied 10 min tSMS over the left motor cortex of healthy subjects using a real/sham parallel design. To measure tSMS effects at the sensori-motor network level, we used resting-state fMRI. Real tSMS, but not sham, reduced functional connectivity within the stimulated sensori-motor network. This effect of tSMS showed time-dependency, returning to sham levels after the first 5 min of fMRI scanning. With 10 min real tSMS over the motor cortex we did not observe effects in other functional networks examined (default mode and visual system networks). In conclusion, 10 min of tSMS over a location within the sensori-motor network reduces functional connectivity within the same functional network.


Assuntos
Excitabilidade Cortical , Córtex Motor , Humanos , Campos Magnéticos , Imageamento por Ressonância Magnética , Córtex Motor/fisiologia , Descanso , Estimulação Magnética Transcraniana
20.
Front Aging Neurosci ; 14: 809972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431895

RESUMO

Background: Current treatments for Alzheimer's disease (AD) modulate global neurotransmission but are neither specific nor anatomically directed. Tailored stimulation of target nuclei will increase treatment efficacy while reducing side effects. We report the results of the first directional deep brain stimulation (dDBS) surgery and treatment of a patient with AD in an attempt to slow the progression of the disease in a woman with multi-domain, amnestic cognitive status. Methods: We aimed to assess the safety of dDBS in patients with AD using the fornix as stimulation target (primary objective) and the clinical impact of the stimulation (secondary objective). In a registered clinical trial, a female patient aged 81 years with a 2-year history of cognitive decline and diagnoses of AD underwent a bilateral dDBS surgery targeting the fornix. Stimulation parameters were set between 3.9 and 7.5 mA, 90 µs, 130 Hz for 24 months, controlling stimulation effects by 18F-fluoro-2-deoxy-D-glucose (18F-FDG) scans (baseline, 12 and 24 months), magnetoencephalography (MEG) and clinical/neuropsychological assessment (baseline, 6, 12, 18, and 24 months). Results: There were no important complications related to the procedure. In general terms, the patient showed cognitive fluctuations over the period, related to attention and executive function patterns, with no meaningful changes in any other cognitive functions, as is shown in the clinical dementia rating scale (CDR = 1) scores over the 24 months. Such stability in neuropsychological scores corresponds to the stability of the brain metabolic function, seen in PET scans. The MEG studies described low functional connectivity at baseline and a subsequent increase in the number of significant connections, mainly in the theta band, at 12 months. Conclusion: The dDBS stimulation in the fornix seems to be a safe treatment for patients in the first stage of AD. Effects on cognition seem to be mild to moderate during the first months of stimulation and return to baseline levels after 24 months, except for verbal fluency. Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/NCT03290274], identifier [NCT03290274].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA